Funktionstests bei omegaVENTUS

Mehr erfahren

Unsere Leistungen

Wir bieten maßgeschneiderte Leistungspakete. Neben der produktneutralen Beratung kümmern wir uns auch um die komplette Planungs- und Bauabwicklung von Windkraftanlagen sowie das Beschaffen von Genehmigungen.
Netzbetreiber & Netzanschlussregeln

omegaVENTUS-Kunden profitieren auch bei ihren internationalen Projektvorhaben von unseren Lösungen gemäß Anforderungen in internationalen Netzanschlussregeln und gleichzeitig Optimierung von relevanten elektrischen Komponenten

 

Land Herausgeber/
Aussteller
Titel Jahr
Australien Australian Energy Market Commission(AEMC) National Electricity Rules, revision 60 2014
Belgien Synergrid (federation of grid electricity and natural gas in Belgium)

 

 

Synergrid (federation of grid electricity and natural gas in Belgium)

Specifieke technische aansluitingsvoorschriften voor gedecentraliseerde productie-installaties die in parallel werken met het distributienet

 

Power Quality voorschriften voor netgebruikers aangesloten op hoogspanningsnetten

2012

 

 

 

2009

Bulgarien State Energy and Water Regulatory Commission Bulgarian Grid Code 2009
Dänemark Energinet.dk

 

Nordel

Technical regulation 3.2.5 for wind power plants with a power output greater than 11 kW

Nordic Grid Code

2010

 

2007

Estland Government of the Republic Võrgueeskiri RT I 2003, 49, 347 (Grid Code) 2011
Finnland Fingrid Oyj General Connection Terms of Fingrid Oyj’s Grid

 

Specifications for the Operational Performance of Power Plants

2007
Griechenland Ministry of Development, Directorate of Energy Grid Control and Power Exchange Code for Electricity 2005
Indien Central Electricity Regulatory

 

Commission

Indian Electricity Grid Code

 

Indian Wind Grid Code (Draft)

2010

 

2009

Irland EirGrid EirGrid Grid CodeVersion 5.0 2013
Italien Terna

 

 

CEI – Comitato Elettrotecnico Italiano

Code for transmission, dispatching, developing and security of the grid

 

Norma Italiana CEI 0-16 V1 Reference technical rules for the connection of active and passive consumers to the HV and MV electrical networks of distribution Company

2005

 

 

2013

Japan Electric Power System Council of Japan The Rules of ESCJ 2009
Kanada Hydro-Québec TransEnergie

 

 

Alberta Electric System Operator (AESO)

Transmission Provider Technical Requirements for the Connection of Power Plants to the Hydro-Québec

 

Transmission System

Wind Power Facility Technical Requirements (Revision 0)

2009

 

 

2004

Kenia Energy regulatory Commission Kenya electricity Grid Code 2008
Lettland Republic of Latvia – Public utilities commission Elektroenerģijas tirgus likums & Tīkla kodekss
(Network Code)
2010
Luxemburg Verteilungsnetzbetreiber des Großherzogtums Luxemburg Technische Anschlussbedingungen für Mittelspannungs-Übergabestationen im Großherzogtum Luxemburg

Technische Anschlussbedingungen für Starkstromanlagen mit Nennspannung bis 1000 V im Großherzogtum Luxemburg

2009

2009

Malta Enemalta Corporation The Network Code (Version 1) 2013
Mauritius Central Electricity Board Grid Code for Small Scale Distributed Generation (SSDG) 2010
Niederlande Office of Energy Regulation (Dte) Electricity Metering/Network/System Code 2007
Norwegen Nordel Nordic Grid Code 2007
Österreich Energie-Control Technische und organisatorische Regeln für Betreiber und Benutzer von Netzen (Teil A-F) Part A (Version 1.6, 2008),
Part B (Version 2.0, 2008),
Part C (Version 2.0, 2009),
Part D (Version 2.0, 2004),
Part E (Version 2.0, 2008),
Part F (Version 2.1, 2007)
2004-2009
Philippinen Energy Regulatory Commission Philippine Grid Code (PGC) incl. Amendment No. 2 2001/2013
Polen Polskie Sieci Elektroenergetyczne Operator S.A. (TSO) Instrukcja Ruchu i Eksploatacji Sieci Przesyłowej – Warunki korzystania, prowadzenia ruchu, eksploatacji i planowania rozwoju sieci (Instruction of transmission system operation and maintenance) 2006
Rumänien Romanian Power Grid Company Transelectrica S.A.

 

Autoritatea Nationala De Reglementare in Domeniul Energiei

Technical Transmission Grid Code Romanian Power System

 

Technical conditions for grid connection of wind power plants (ANRE 51/2009)

 

Conditii tehnice de racordare la retelele electrice de interes public pentru centralele electrice fotovoltaice (ANRE 30/2013)

2004

 

2009

 

 

2013

Skandinavien
(Dänemark,
Finnland,
Norwegen,
Schweden)
Nordel Nordic Grid Code 2007
Slowakei Slovenská elektrizačná prenosová sústava (Office for the Regulation of Network Industries) Slovak Transmission System Code 2002
Spanien Ministry of Industry, Commerce and Tourism P.O. 12.2 Instalaciones conectadas a la red de transporte: requisitos mínimos de diseño, equipamiento, funcionamiento y seguridad y puesta en servicio
(Operational Procedure 12.2: Installations connected to a power transmission system and generating equipment: minimum design requirements, equipment, operations, commissioning and safety)
P.O.12.3 Requisitos de respuesta frente a huecos de tensión de las instalaciones de producción de régimen especial
(Operational Procedure 12.3: Requirements regarding wind power facility response to grid voltage dips)
2005/
2006
Schweden Svenska Kraftnät

 

 

 

Nordel

The Business Agency Svenska kraftnät’s regulations and general advice concerning the reliable design of production plants

 

Nordic Grid Code

2005

 

 

 

2007

Südafrika The RSA Grid Code Secretariat of Eskom Transmission Division

 

 

National Energy Rogulator of South Africa (NERSA)

Grid code requirements for wind energy facilities connected to distribution or transmission systems in south africa (Version 5.4)

 

Grid connection code for renewable power plants (RPPs) connected to the electricity  transmission systems (TS) or the distribution system (DS) in south africa

2012

 

 

 

2012

Tschechien ČEPS Rules for Transmission System Operation – The Grid Code 2011
Türkei Elektrik Piyasasi Sebeke Yönetmeligi (“Electricity market grid regulation” incl. Appendix 18 connection criteria required for wind generators (Version 28517)) 2013
Ungarn Magyar Villamosenergia-ipari Átviteli Rendszerirányító Zártkörűen Működő Részvénytársaság (MAVIR) => TSO Üzemi Szabályzat (Operating Rules)
Üzemi Szabályzat melléklete
(Operating Rules Annex)
2011
Uganda Electricity Regulatory Anthority The Electricity (Primary Grid Code) Regulations (2003 No. 24) 2003
USA Federal Grid Electricity Transmission Interconnection for Wind Energy 2005
Vereinigtes National Grid Electricity Transmission The Grid Code – Issue 5 Revision 6 2013
Königreich National Grid Electricity Transmission The Grid Code – Issue 5 Revision 6 2013
Zypern Transmission System Operator -Cyprus Transmission and Distribution Regulation 2011
Grid Code analysis and specification

Our experts are continually aligned with the TSO’s, DNO’s and certification bodies ensuring state-of the art specifications based on worldwide actual valid requirements for renewable power plants and generating units.

  • Requirements for Power Plants: analysis and interpretations aligned and agreed directly with the TSO of on- and off-shore applications in the European, American and Asian markets
  • Requirements for Generating Units: analysis and interpretations aligned and agreed directly with the TSO or DNO of on- and off-shore applications in the European, American and Asian markets.
  • Specifications for Power Plants: measurements-, modelling- and simulation plans and definitions, based on project dedicated standards
  • Specifications for Generating Units: measurement-, modelling- and simulation plans and definitions, based on project dedicated standards
  • Other Requirements/Specifications: dedicated to the compliance of prototype activities, project specific solutions, considering the optimal integration of the generating unit within the power plant connected to the grid
No.       REFERENCE NAME
[1]               GL2012-OFS Guideline for the certification of offshore Wind Turbines, GL Ed2012
[2]               VDN German Transmission Code 2007
[3]               BDEW Guideline for plants connected to the medium-voltage network, Ed. June 2008
[4]               SDLWindV Ordinance on System Services by Wind Energy Plants
[5]               FGW, Part 3 Measurements of Electrical Properties – Power Quality (EMC), Revision 23, dated 01.05.2013
[6]               FGW, Part 4 Modelling and Validating Simulation Models of the Electrical Characteristics   of Power Generating Units and Systems, Revision 6, dated 07.04.2014
[7]               FGW, Part 8 Certification of the Electrical Characteristics of Power Generating   Units and Systems in the Medium-, High- and Highest-voltage Grids, Revision 6, dated 01.05.2013
[8]               TenneT TSO Requirements for Offshore Grid Connections in the Grid of TenneT   TSO GmbH, dated: 21-12-2012
[9]               50Hertz TSO NETZANSCLUSS UND NETZANSCLUSSREGELN, Technisch organisatorische Mindestanforderungen, Stand Mai 2008
[10]            NGET National Grid Electricity Transmission, THE GRID CODE – ISSUE 5 – Revision 4, 19 August 2013
[11]            RTE Réseau de transport d’électricité, Documentation technique de référence
[12]            ENTSOE Commission Regulation (EU) 2016/631 of 14 April 2016 establishing a network code on requirements for grid connection generators.
[13]            Danish Technical regulation 3.2.5 for wind power plants with a power output above 11 kW. Published UK edition, approved 10.06.2015
[14]            Dutch Tennet, Compliance activities in relation to Connection Requirements Wind Farms System Operations – Version V3.0 January 2014
Electrical measurements

Electrical measurement and supervision activities implies all engineering measurements activities, including Development Accompanying Assessment (DAA) to ensure the compliance of the electrical behavior according to the design requirements of the costumers and to the respective grid codes, ensuring the conformity to all relevant standards up to the certification guidelines worldwide.

Validation of single components and the whole electrical system
Includes measurement campaigns and validation of single components up to the whole system of the power generating units and power plants.

Grid code compliance and specific project requirements toward relevant standards
Includes the grid code compliance of the power generating units and power plants. The main groups of the electrical measurements related to the grid code compliance are listed in the table below

No.       Electrical measurements Guideline
[1]                Continuous operation IEC 61400-21, FGW TR3
[2]                Maximum power IEC 61400-21, FGW TR3
[3]                Cut-in-conditions IEC 61400-21, FGW TR3
[4]                Switching operations IEC 61400-21, FGW TR3
[5]                Ramp rate limitation IEC 61400-21, FGW TR3
[6]                Set-point control active & reactive power IEC 61400-21, FGW TR3
[7]                Reactive power capability IEC 61400-21, FGW TR3
[8]                Current harmonics, interharmonics and higher freq. Components IEC 61400-21, FGW TR3
[9]                LVRT / HVRT IEC 61400-21, FGW TR3
[10]             Grid protection IEC 61400-21, FGW TR3
[11]             Reconnection time IEC 61400-21, FGW TR3
[12]             Power limitation at increased grid frequency IEC 61400-21, FGW TR3

 

Our services are focused (but not limited) through the following activities:

      • Specification of the scenarios in a measurement plane, including success criteria’s
      • On-site measurements and/or assessment of measurements
      • Verification of the compliance to the success criteria’s
      • Elaborating of optimal solutions by interactions with the public grid on the grid connection points
      • Data analysis and final measurement reports in compliance to the relevant standards
Modelling and simulations of Power Generating Units

The model of the generating unit which is required to be used in simulations must reflect the measured electrical characteristics with sufficient accuracy given in different standards.

      • Dynamic models: Developing of Root-Mean-Square models, the so called RMS Model
      • Quasi-steady-state models: Simplified model to determine the reactive power supplied in the normal operating mode. Depending on the complexities of the WTG system, this model can be included in the RMS model above
      • Electro-Magnetic-Transient model: Developing of the EMT Model
      • Harmonic model: Developing of equivalent Thevenin and Norton harmonic model
      • Building of Software interfaces: co-simulation studies with models or model blocks in different software using dll’s (e.g. MATLAB/Simulink, DigSilent/Power Factory, PSCAD and GH Bladed)
      • Validation of the models according to the modelling standards and the grid code:
              • Short circuit current capability of electrical devices within the wind farm
              • Reactive power exchange and voltage stability
              • Voltage- and current harmonic impact
              • Low- and High Voltage Ride Through behavior – grid support during failures
              • Primary Control – active power reaction during frequency deviations

Below a simple illustration of model boundaries and validity in the unit level is shown, using an example of a wind turbine generating unit as full converter concept (WTG Type 4b).

Modelling and simulations of Power Plants
    • Modelling and validation of all relevant electrical devises within the power plant (e. g. all electrical devises within the windfarm)
    • Modelling and validation of the Wind Farm Controller (WFC)
    • Integration and plausibilisation of validated individual windturbine models, windfarm controllers and other components in the complete windfarm system
    • Wind farm grid compliance studies by using validated wind turbine models
    • Creation of technical reports for grid wind farm integration and wind farm WTG integration simulation studies – required from the relevant grid codes and standards
    • Creation of technical reports after the investigation of failures within the electrical drive train of wind turbines – e.g. short-circuit current capability
    • Conformity validation regarding respective grid codes for the harmonics spectrum
  • For the investigation of the grid code compliance, simulation studies will be performed in wind turbine and wind farm level regarding:

        • Steady-State simulations
        • Short-circuit calculations and simulations
        • Frequency response calculations
        • Short circuit & protection calculations and simulations
        • EMT Simulations
        • Harmonics simulation and investigation

    Our experts are continually aligned with the TSO’s, DNO’s and certification bodies in order to ensure that the investigation scopes covers all relevant requirements stated in the actual versions of the grid codes. The main groups of the required simulation studies are listed in the table 2 below, depending on the grid code applying to the project the supplier can chose the investigation of all topics or a part of the list as stated (but not limited) in the table 2 below.

    No.       METHOD of calc. DESCRIPTION OF THE TOPIC
    [1]                Steady state Investigation of several no load and auxiliary power supply cases
    [2]                Steady state Investigation of partial- and full-load generation scenarios
    [3]                Steady state Calculation and evaluation of the P-Q-diagrams at the PCC’s under consideration of overall voltage band in super grid voltage
    [4]                Steady state Investigations according point 3 with and without automatic voltage control at the PCC by the step up transformers
    [5]                Steady state Verification of the voltage stability and the dimensioning of the electrical equipment
    [6]                Steady state Calculation and identification of the wind farm network losses
    [7]                Steady state Verification of the PQ-capabilities and the dimensioning criterions for selected n-1 outages
    [8]                Steady state Calculation and evaluation of max. 3-phase short circuit currents
    [9]                Steady state Calculation and evaluation of max. 1-phase short circuit currents
    [10]             SC Calculation Verification of the dimensioning of the electrical equipment regarding short circuit stressing
    [11]             SC Calculation Verification of the effectiveness of the neutral earthing, calculation of earth fault factors
    [12]             SC Calculation Calculation and evaluation of max. 2-phase and 2-phase-earth short circuit currents
    [13]             SC Calculation Calculation and evaluation of the symmetric short circuit fractions of the OWF at the PCCs
    [14]             SC Calculation Calculation and evaluation of the asymmetric short circuit fractions of the OWF at the PCCs
    [15]             Frequency
    resp. calculation
    Calculation and evaluation of the frequency responses at the PCCs for several switching stages and generating conditions*)
    [16]             Frequency
    resp. calculation
    Evaluation of network resonances*)
    [17]             Frequency
    resp. calculation
    Calculation and evaluation of the frequency responses at the PCCs for several stages of expansion
    [18]             Harmonic calc. Calculation and evaluation of the voltage harmonics at the PCC for several switching stages
    [19]             Harmonic calc. Replication of the WTGs by harmonic voltage sources
    [20]             EMT/RMS calc. LVRT studies (3-phase faults)
    [21]             EMT/RMS calc. LVRT studies (2-phase faults with / without earth)
    [22]             EMT/RMS calc. LVRT studies (1-phase faults)
    [23]             EMT/RMS calc. LVRT studies for innerpark faults
    [24]             Harmonic calc. Consideration of several generating conditions (for P and Q)
    [25]             EMT/RMS calc. Consideration of several voltages at the PCCs
    [26]             EMT/RMS calc. Studies on longitudinal grid faults and load shedding
    [27]             EMT/RMS calc. Simulation of rapid voltage changes at the PCCs
    [28]             EMT/RMS calc. Investigation on the energizing of transformers, cables, reactors
    [29]             EMT/RMS calc. Verification of the dynamic behavior in relation to overfrequency
    [30]             EMT/RMS calc. Dyn. studies related to fluctuating wind / gusts of wind
    [31]             EMT/RMS calc. Verification of the EPC functions according to the design requirements
    [32]             EMT/RMS calc. Verification of the voltage / overvoltage guard
    [33]             EMT/RMS calc. Verification of the under- / overfrequency guard
    [34]             EMT/RMS calc. Consideration of several switching stages and generating conditions
    [35]             EMT/RMS calc. Verification of the grid code conform protection coordination
    Control strategies to optimize the performance of the power plane

    The kind of scope of services rendered by neveling.net GmbH are based on the relevant agreements concluded, subject to the Rules applicable at the time of survey or inspection, unless otherwise provided by separate express agreements. It is the client obligation to ensure that the services of neveling.net GmbH can be rendered smoothly, be granted unrestricted access and the right of inspection. Any information, drawing, etc. required for performance of the functions and activities of neveling.net GmbH must be made available in due time. Before neveling.net GmbH starts work, the client shall inform neveling.net GmbH about relevant safety issues and take all necessary safety-related measures to ensure a safe work for neveling.net GmbH and shall comply with all legal and other safety relevant regulations.est Lorem ipsum dolor sit amet.

    Modeling and Simulation Tools MATLAB / Simulink, DigSILENT, GH Bladed

    a. Developing of Root-Mean-Square models: RMS Model
    b. Developing of Electro-Magnetic-Transient models: EMT Model
    c. Developing of Harmonic model: Thevenin and/or Norton model harmonic equivalent
    d. Building of Software interfaces: co-simulation studies with models or model blocks in different software using dll’s (e.g. MATLAB/Simulink, DigSilent/Power Factory, PSCAD and GH Bladed)
    e. Validation of the models according to the modelling standards and grid codes:

        • Short circuit current capability of electrical devices within the wind farm
        • Reactive power exchange and voltage stability
        • Voltage- and current harmonic impact
        • Low- and High Voltage Ride Through behavior – grid support during failures
        • Primary Control – active power reaction during frequency deviations
    Validation of mathematical models of
    • Modelling and validation of all relevant electrical devises within the power plant (e. g. all electrical devises within the windfarm)
    • Modelling and validation of the Wind Farm Controller (WFC)
    • Integration and plausibilisation of validated individual windturbine models, windfarm controllers and other components in the complete windfarm system
    • Wind farm grid compliance studies by using validated wind turbine models
    • Creation of technical reports for grid wind farm integration and wind farm WTG integration simulation studies – required from the relevant grid codes and standards
    • Creation of technical reports after the investigation of failures within the electrical drive train of wind turbines – e.g. short-circuit current capability
    • Conformity validation regarding respective grid codes for the harmonics spectrum
  • Certification process

    Our certification experts supports your projects through the whole certification process of the electrical behavior of the wind turbines, wind farms and other generating units. The activities are focused (but not limited) on the type certificate for design requirements, unit- and planed certificate for electrical behavior, as well as other costumer needed statement of compliance to be issued from certification body’s.

    The scope in this process includes the following main tasks which we are covering:

        • Clarification of the requirements with the certification body
        • Clarification of requirements with the DNO or TSO
        • Specification of the documents to be supplied to the certification body
        • Executing of calculation or simulations needed for the certification
        • Creation of Reports and other documents needed for the certification
        • On-Site support for verification of the conformity to the certificates
        • Assessment and monitoring of certificates issued from certification body
    Project Management

    Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

    Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

    (muss noch umformuliert/erweiter werden)

    Forschung und Entwicklung

    Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore.

    Netzanschluss, Modellierung und Netzstudien

    Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore.

    Inbetriebnahme, Abnahmen & Funktionstests

    Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore.

    Messung Elektrische Eigenschaften, Erstellung von Messberichten

    Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore.

    Zertifizierungsbegleitende Expertise

    Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore.

    Projektmanagement

    Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore.

    Für zusätzliche Informationen und Fragen stehen wir Ihnen gerne zur Verfügung.
    Rufen Sie uns an!

    040 1234567

    Best Practice

    Wir bringen den Windpark XYZ in Gang – hier gibt es die komplette Erfolgsstory.
    Hier geht es weiter